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THE STRANGE CASE OF THE CRACOVIAN OPERATORS

A Ouestion of Common Sense

When first exposed to linear algebra, and learning about
matrix operations, most science students must have wondered, as I
once did, why on earth mathematicians had invented such complicated
ways to multiply together two tables of numbers that were often
nothing more than the coefficients in a set of ordinary equations.
But linear algebra is intimidating in its elegance and power, and
few students have enough curiosity and temerity to raise their hand
and ask their professor what would happen if we turned things
around and multiplied these tables together in a common sense,
natural way, by performing simple column multiplications.

If they did, and if their professors themselves had the
curiosity to research the matter, they would find that for most
practical applications of matrices the simplest method works just
as well and indeed, leads to a lower chance of errors when
numerical calculations are performed by hand. Not only is it more
natural, but that is exactly the way such operations were used in
the early part of this century, and an entire body of theory even
existed on the class of mathematical creatures that could happily
multiply in this uncomplicated way.

The creatures in gquestion were not called matrices but
"cracovians". TFor all practical purposes they could do all the
things matrices did, they were much easier to use, and they had
many amusing properties of their own.
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There is no way to rediscover cracovian theory today except by
accident. I stumbled across it when I was asked to compute stellar
motion parameters for a large number of bright stars while serving
as a programmer at Dearborn Observatory. Tracking down an obscure
astronomical reference I found the formulas oddly unfamiliar,
although they gave the correct result, A little more research in
foreign astronomical journals of the twenties revealed cracovian

theory in all its beauty, a mathematical land that time forgot.

Cracovian Operators in Astronomy

The inventor of cracovians, who must also be credited with the
introduction of linear algebra (in cracovian form) into celes;ial
mechanics, 1is the Polish astronomer, T. Banachiewicz. His
fundamental papers appeared in the publications of the Cracov

Observatory in 1923 and 1924, and in the Supplemento Internationale

(19258).

Determinants were already known in the seventeenth century,
but it took a long time for this new branch of mathematics to
develop. Although linear algebra had been invented by Cauchy and
his colleague Sturm, and although Cayley had introduced the theory,
terminology and notation of matrices as early as 1857, it was not
until 1925 that physicists Heisenberg, Born and Jordan applied them
to problems which were not purely mathematical, and the subject did
not become familiar to the engineering profession until the
publication of the important paper by Duncan and Collar ("A Method

for the Solution of Oscillation Problems by Matrices") in 1934.




Because they were faced with the necessity of performing long
and intricate manipulations of spherical coordinates, astronomers
had been the first to realize the need to treat problems of
transformations in terms of arrays. However, astronomical formulae
were by necessity oriented towards numerical computations, and the
scheme of matrix multiplication was found cumbersome, error-prone
and inconvenient in this respect.

The Polish astronomers felt that the requirements of hand
calculations would be met, while mathematical elegance would be
preserved, if arrays were written in such a way that their product
would involve only column multiplications. This led T.
Banachiewicz to develop the theory of gracovian calculus, which
represented the first introduction of linear algebra in applied
mathematics. His notations were used in many problems, and it was
universally admitted that the multiplication of cracovians was more
convenient than the multiplication of matrices, predisposing them

for all effective calculations. Procedures for checking cracovian

operations were given. Soon applications ranged from the
derivation of the fundamental formula for Spherical Polygonometry
to simpler methods of Least Sguares solutions, surveying problems,
the theory of the motion of the Moon, and many others.

After World War II, however, as linear algebra lost the
character of a discipline exclusively reserved to the pure
mathematician, the use of matrices became general. At the same
time, the introduction of much more powerful computational

techniques seriously limited the usefulness of the cracovian




scheme, except in a few specific areas of numerical analysis. When
1 wrote that cracovians could do all the things matrices did, that
was only true for simple caleculations. But cracovian product is
not associative. Furthermore, from a more theoretical point of
view, Russian astronomer Bazhenow pointed out that the isomorphic
correspondence of the multiplications between the linear
transformations and the matrices did not extend to cracovians,
The cracovian formulae are forgotten today, but they served a
useful purpose as the forerunners of the modern treatment of matrix
algebra. As numerical instruments, they were of considerable
interest, as can be seen from a survey of computing techniques used
in the world‘s observatories in 1235, where 25 out of 27
astronomers who had used it found the technique useful: Lowell
Observatory, for example, answered: "We have recently become quite
impressed by the elegance and efficiency of the cracovian scheme."
We propose to provide some details about cracovian calculus,
and to show how it was used in practice in the computation of

stellar velocities.

Elements of Cracovian Calculus

To satisfy the requirements stated above, we are led to write
linear transformations in the form of arrays which involve only
column multiplications, for exanmple:

e all azl aj:t x!

(1)

1]
.

Y al2 az22 aljz

2 ali . az23 a3l z!




with:
%’ = all.x + al2.y + alld.z
y! = azl.x + a22.y + az2i.z (2)
z! = a3l.x + a32.y + a33.z2

While we are used to representing the same linear transformation in

the form:
x! all alz als3 X
¥y = azl az22 az23 y (3}
z! a3l a3z a3i3 Z

By comparing the arrays 1in expressions (1) and (3) we
recognize that the cracovian of the linear transformation is the
transpose of the usual matricial notation. Now, let cracovian

multiplication be defined by the simple rule:

e, =y Ay by (4)

c, = Z 2., b (5)

k
Thus, given two arrays:
a b pd
A = and B =
c d r s

Their product as matrices is:
a b P d ap+br ag+bs
(6)

fl

c d r. s cp+dr cyg+ds
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while their product as cracovians is:

a b p g ap+or bp+dr
(7}

It

c d r s ag+cs bg+ds
In the resulting array of expression (7) we recognize the matrix
product where the second array has bheen transposed:
P r a b ap+cr bp+dr
= =B xa (8)
g = C d ag+os bg+ds

Thus, if we denote by € the cracovian product, we have the formula:

A@B=C BXA (9)

Now, let T be the cracovian unity:
1 0 a b a c
T @A-= @ = (10)
0 1 o) d b d
Thus, cracovians exhibit a property which is without equivalent in
matrix algebra: premultiplication by the cracovian unity directly

provides the transpose.

Coming back to the cracovian preduct, we deduce from (8) the

converse property:

AXB-—-B@tAJ (11}

Having computed A@B, let us now compute B@A:
P d a b apter ag+cs
B &A= @ = (12}
r s c d bp+dr be+ds




Ccomparing this result with expression (6) we observe that,

if C = A@B, then B@A = T@C.

In other words,

A@B=t(B@A) (13)

So far, we have used only square arrays, which are simpler for
illustration purposes. But in the more general case we would
observe that, while the product of two watrices AxB is not
necessarily defined whenever BxA is defined, both left and right
multiplication are always defined together for the cracoevians,

which is another interesting advantage over matrices.

The cracovians as rotation operators.

Consider figure 1 and call (a,b,c) the coordinates of point M
pefore rotation of the axes, while (a’, b/, ¢’) are its coordinates

after rotation. If Ox is the axis of the rotation of angle«, we

can write:

af = a
bh! = b cos¥ + c sing {14)
c!/ = C cosel = b sing

The matricial notation of this transformation is well known. In

terms of cracovians, however, we will use formula (1) and write:

a’ a 1 0 0
'y = bliaio cos¥ ~-sinX (15)
o’ C 0 sins cos ¥

This cracovian operator will be denoted by p(«).




Similarly,

we shall denote by g(&) and r(«)

the cracovian

operators of the rotations of angle ® with Oy (resp. 0z) as the

axis.

We are thus led to write:

cos K 0
g (X) =4{ 0O 1
-sing( 0
cos® -sin&
and r () = ¢{singK cosX
0 0

sin#&
0 (169

cos

0
0 {17)

1

These operators are basic in the computation of stellar velocity

components.

3t
X

Figure 1.
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Rotation of angle & with Ox as axis.
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It should be noted that, because cosines occur only on the

diagonals of all three operators p,q and r, we have immediately:

g{~e« ) =T @ gq( ¥ ) = transpose of g( « ). (18)

The use of cracovians in the computation of space velocity.

The knowledge of four parameters is essential in determining
the direction and amplitude of the velocity vector of a star: its
distance from the sun (which, if expressed in parsecs, is the
reciprocal of its parallax T in seconds of arc); its radial
velocity R, and the componentsfﬁ_andfé of its tangential velocity.
These quantities being known, the problem arises of transforming
these four parameters of motion (after correction for the earth’s
own motion) into velocity components defined by reference to the
equatorial system, and then to the galactic standard of rest.

The ratiosfé/w andf% /T represent the tangential velocity
components in astronomical units per year. If k = 4.738 is the
speed in km/s that corresponds to 1 A.U./year, then the tangential

velocity components are obtained from the proper motion components

by the formulae:

Ty = kt&/‘ﬂ“ and TS = khg/'rr {192)

These quantities, like radial velocity R, are now expressed in km/s

and are referred to the star’s own system. It is brought into




coincidence with the equatorial system by two rotations ( & , S)
giving the equatorial linear components (x,y,2z) of the stellar
velocity. But two more rotations of the coordinate system are
required in order to bring this system to coincide with the
galactic axes, yielding the three galactic components u,v and w.
We need only say a word of the classical trigonometric method,
which invelves the computation of numerous intermediate parameters,
in particular the galactic coordinates of the star, and which lends
itself with difficulty to high-~speed computation: If {Jl: and (J:e are
computed along with the galactic coordinates b and £ by suitable
changes of spherical coordinates, we can calculate'rz = k(@ /T

and TE = kt? /0, then the projection:

Vf = R cos b -V sin b {20)
and finally:

u = Ve cos { - vy siné

v = Vp sinf + v cos £ (21)

il

W R sin b + VE cos b

In practice, a great number of intermediate steps (where precision
often deteriorates) are necessary to evaluate(ﬁ ,}t ,-ﬁ and b by
this process, and the successive projections and changes of

coordinates, although mathematically convenient, are very

cumbersome.
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On the contrary, methods using linear algebra have great
elegance and lend themselves easily to high~speed calculation using
digital computers. In the approach A. Przybylski has proposed in

Acta Astronomica vel. 12 (1962) no.4, we perform four rotations

with appropriate axes to bring the x-axis in the direction of the
galactic center ¢C; the y-axis in the direction of galactic
rotation; and the z-axis in the plane Galactic Center - Galactic
North Pole - earth. The corresponding sequence of cracovian

operations is, with the notations of formulae (15,16 and 17):

u R
vi =4 Tep ea(d) er,-¥) e [p(h ) eard )] (22)
W Ta

N -North Pole

Direction of
Gelactic Pole

{(Equator

Direction of
Galzctic Center

Figure 2. The Galactic System - Definition.
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where o, , 8; and ¥  are constants, respectively: the right
ascension and declination of the Galactic <Center and the
parallactic angle (which is the angle Galactic North Pole -
Galactic Center - North Pole as shown on Figure 2 and as defined in
Monthly Notices 121, 123, 1960).

A. Przybylski remarked in his paper that, while the classical
formulae for the computation of these gquantities (for instance,
those given by Smart in Stellar Dynamics, 1938, p.14) require the
computation of the galactic coordinates of the star and its
galactic parallactic angle, the cracovian scheme made the
computation of intermediate data unnecessary and required only
sixteen multiplications and nine additions, The last two
cracovians in formula (22), it will be noted, contain only constant
values and can be computed once and for all. ©No wonder cracovian
operators were popular with astronomers before the Second World
War. The technigue brought significant savings in time, fewer

opportunities for mistakes and greater accuracy.
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When the electronic computer became available, matrix
computation was readily reduced to software and the need for
cracovians vanished. It is unfortunate that their history was
forgotten at the same time, if only because knowledge of this
amusing alternative to matrix algebra might help make the teaching
of this branch of mathematics more interesting to students,

In my own work I went ahead and wreote the stellar velocity
reduction program using cracovians instead of matrices. The
calculations posed no problems, but anyone stumbling on the program
source code without warning and trying to understand it may have

experienced serious puzzlement and perhaps an unfortunate headache.
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