(without time, date, or author identification) and the geological specimens. Their instructions were to assign one or more specimens to each description. We consider the method of judging to be a critical factor. While Puthoff and Targ used a ranking system, we used a percentage scoring system. Each specimen assigned to a given description was allotted a percentage score which reflected the judge's certainty of the "match." The total of 100 percent could be divided among any or none of the specimens. We then totaled all five judges' assignments for each description to find which specimens scored the highest for each description. The results are shown in the accompanying table.

The corrrect target sample was assigned the highest score (that is, "correctly" identified) in 8 out of 33 cases on the basis of the remote viewing description. This frequency is more than double a pure chance expectation of 3.3 and would occur less than once in 100 trials by chance. For a more detailed analysis, which accounted for the distribution of percentages among several targets for each description, the percentage scores were computer processed with the Statistical Package for the social sciences. A one-tailed T-test was used to determine the probability that the assigned percentage scores for correct and incorrect targets were due to chance. For all 33 transcripts, the probability of achieving the observed distribution of the percentage scores by chance was 0.08. For transcripts provided by participants I. S. from New York and R. B. from Orlando, Florida (9 and 11 transcripts, respectively), the T-test indicated a 0.04 probability score.

Following are some descriptions of the target specimens taken from the remote viewing transcripts:

Target F was halite, which is NaCl (salt). It consisted of two, almost transparent, intergrown crystals. Transcript #18 said, "crystal, crystal ball, glass, crystal, clear crystal...formed by dripping and evaporation ... acquired by mining but found quite near surface ... Northern Nevada." (Actual origin was Southern Nevada.) Transcript #17 referred to supersaturated salt solutions, and Transcript #3 said, "white thing like a coral... will crumble if treated hard... more than one part... it grew."

Target D contained blue-green and milky-white opal clusters in a brown pyramidal silica rock. Transcript #25 said, in part, "Why do I keep getting GREENS? I see a medium size green wedge ... flecked with brown rock color ... I don't see a pure green emerald crystal... it is flecked and connected to a coarse rock edging... It looks to me like it was poured, a heavy liquid green plastic (the green becoming blue-green at the edges of the sample), and if it is fractured it would be in one clean smooth break of glassine purity."

About two-thirds of the transcripts contained descriptive elements that corresponded with the correct target specimen, but often these were mixed with noncorresponding elements, and it was not possible to reduce the information to a coherent single identification. The characteristics most often identified correctly were the color of the sample, the shape, relative weight, presence of crystals, type of material (e.g., metallic), and geological formation process (e.g., volcanic). Attempts to specify location were usually in error as were descriptions of the size of the samples and their exact substance. We do not know if these patterns are due to the participants or to the nature of the information transfer process. We suggest that further studies should select targets that are easily discriminated (i.e., widely different) along these "most perceived" characteristics.

We were encouraged by these results. Accurate and significant remote perception occurred under test conditions that placed the most successful participants 2500 M away from the targets. Also of interest is the result that the double blind conditions provided equally correct descriptions, suggesting that the ability under study also functions on information not known to others. The computer conference system allowed control of the test conditions, with complete recording of all messages among participants.

The fact that several of the specimens were composite and contained mixed materials made this an especially complex (though realistic) test situation, perhaps more demanding than the conditions that prevailed in the SRI studies, at least for non-geologists. Our results tend to validate Puthoff and Targ's experiments and indicate that remote viewing techniques are deserving of further attention.

The conference and experiments were made possible by Mr. A. Katz of Deer Communications, Inc., San Francisco. We also express our gratitude to Messrs. Hudson and Wilson for their assistance in carrying out and analyzing the experiments. Our special thanks go to the five judges: Ms. Amara, Ms. Chula, Dr. Johansen, Dr. Lipinski, and Ms. Spangler.