» i i

OXFORD -

Reprinted from

INFORMATION STORAGE
AND RETRIEVAL

GAMOI

LONDON -

! PRESS

NEW YORK - PARIS

f TS

Inform, Stor. Retr. Vol. 6, pp. 387-399, Pergamon Press 1970. Printed in Great Britain

DIRAC: AN INTERACTIVE RETRIEVAL LANGUAGE WITH
COMPUTATIONAL INTERFACE

J. F. VALLEE®

o

Manager, Information Sysicms,
Computation Center, Stanford University, Stanford, California 94305

Summary—An interactive file-oricnled language that allows the user to interface with a text-editor and with
his own FORTRAN or assembly Janguage code has been used to illustrate the Hexibility of non-procedural
techniques in the scientific field. The language is the first in a family of prototypes used to test alternative
formulations of file organization problems connected with the storage and retrieval of scicntific records,
medical data or library documents in an interactive mode. The applications described here use files of research
data in astronomical and medical ficlds. It operates exclusively in a time-sharing environment. The article
describes the system and its applications from the point of view of language design, and it gives a detailed
discussion of the file organization upon which it reties.

WIDESPREAD acfivity has recently been directed at the implementation of non-procedural
languages dedicated to data-base management. Typically, these systems allow their user to
specify retrieval, extraction and update actions to be taken on his data, without requiring
the intervention of a programmer. Not only are such systems financially attractive, they
also offer an opportunity to accelerate the flow of information from its source (such as &
market or a cost center) to the level where management decisions can be made most meaning-
fully [i].

TECHNICAL FROBLEMS

The impact of such languages on the design and utilization patterns of future data-
bases is difficult to evaluate, but three interesting facts do stand out when they are replaced
within the framework of traditional software: first, in spite of the convenience of their
external features (that may include some on-line display capabilities) their design and
implementation generally reflect the concepts of second-generation file processing rather
than those of the time-sharing, interactive environment. Second, the user finds himself
locked inside a set of language commands that may be very sophisticated indeed as long as
he deals with basic file-oriented functions, but it is only with great difficulty that he can
force information outside the system and into programs expressed in other high-level
languages. Third, all language features are aimed.at the business user: to our knowledge, no
generalized file management system has yet been applied to the solution of a scientific
problem; as a result, they do not take full advantage of the insight gained by the designers
of scientific systems intended for both documentation and computation.

* This paper is based in part on experiments conducted by the author and on a language he designed
prior to his association with Stanford University.
387

)

388 J. F. VALLEE

As the level of sophistication of the user community rises, and as the frontier between
business and scientific processing becomes Iess sharply defined, we feel that the three problem
areas we have mentioned can be expected to appear prominently among the obstacles
facing the developers of new data-base systems. The purpose of this article is to explore
these implementation difficulties from a technical point of view, not to propose a universal
solution. This can be best achieved by describing a complete language prototype and by
reporting on the assets and liabilities of the alternative formulations we have hypothesized
for the three points mentioned above.

We shall first bricfy describe a modular prototype system that serves as the basis for the
current experiments. This description will center on the language design aspects of the
system and on its user interface.

1. THE DIRAC LANGUAGE FAMILY

Activities and levels of users

The language used in the current interactive experiments, DIRAC-I, is the first proto-
type in the family of information-oriented languages we have designed. The objective is to
facilitate flexible interaction with large files of scientific data. The language Is of the nen-
procedural type and demands no previous computer experience on the part of the user. It
allows creation, updating, bookkeeping and validating operations as well as the querying
of data files [4]. These activities take place in conversational mode exclusively. To the more
sophisticated user the DIRAC languages offer a simple interface with the Stanford text
editor (WYLBUR) and to the systems programmer they make available a straightforward
interface with FORTRAN that does not require intermediate storage of the extracted
information outside of the direct-access memory.

The name DIRAC (ID1Rect ACcess) is intended to remind the user of this fact. It also
surmimarizes the five daia types handled by the language, respectively: Date, Integer, Real,
Alphanameric, Code.

Four operation modes

The user of DIRAC can apply to any file (that he is authorized to access) any com-
mand within one of the four sets grouped under the modes: CREATE, UPDATE, STATUS
and QUERY. The first of these modes is a privileged one, but this privilege can be extended
to any user by the data-base administrator at the time of file creation: it consists in the
definition of a file or a series of interrelated files, according to a terminology to be defined
below, in both nomenclature and structure. The result of the CREATE commands is the
implementation of a file schema whose information content, for the moment, is nil. This
schema can be evoked, however, by the UPDATE commands that will start filling the
structured set with information drawn either from the working data set operated on by the
text editor, or directly from the user’s own terminal, Deletion and replacement commands
are also available and a chaining structure that will be described in detail in part 4 is super-
imposed to the information which is apparent to the user; a number of measures, still
triggered by the UPDATE commands, are taken to reduce the storage requirements and to
guarantee the privacy of the information as it is validated and stored.

In QUERY mode, the user can obtain information from and about any SELECTed
subset of his data files, at any level of the structure. The various commands that allow

Bt e e,

DIRAC: an Iateractive Retrieval Language with Computational Interface 389

selection and extraction are described below, after an overall summary of the data organiza-
tions recognized by DIRAC. Finally, the STATUS mode provides the user or the DB
Administrator with up-to-date status reports where field identification, description, statistics
and validation information are summarized within a standard report form.

Implicit and associative query -

To illustrate the differences between the information processing concepts of DIRAC
and those of traditionat procedural languages, one could draw examples from a number of
fields. Assume, for instance, that a certain attribute A of an object is measured by a real
number, so that we might want to query the file for all-objects having & greater than
13.7: this is naturally possibic under any system. At the same time, the digits of this reul
number might have individual significance (in part designations and in some library or
medical codes this situation is encountered). We may then be tempted to write something
like:

X (> 13.7 AND DOES NOT CONTAIN 9.2)

The above statement is a valid selection rule in DIRAC, It will exclude the values 19-2,
29.2, etc. from the list of X values that exceed 13.7.

The ability to specily implicitly the accessing of deep levels of the file structure, and to
continue the query associatively, is also present in DIRAC-1. For instance, consider the
following information stored in a list of file values called “Address” in a customer file:

! i
i Customer | Customer 2 il . Customer 3
{1302 La Plata Ave 205 E 32 street {13 Mission Blvd. |
New Brunswick Princeton Paris l
Kansas New Jersey 1llinois

Then the following DIRAC selection rules will be applicable:

Address(ANY) CONTAINS New —uwill select I and 2
Address(ALL) CONTAINS is —will select 3
Address(LAST) CONTAINS New—will select 2

We could then follow such a statement with a rule of the type:
Transaction(ASSOCIATED) = XYZ

The condition would then be applied only to those entries situated at the same level in the

information tree of the ““Transaction” list.
To enhance the string scanning capabilities of DIRAC, the character (1) is used as a wild

symbol. Thus the statement

Address(2) CONTAINS “rIn”--will select 1 (run in Brunswick)
and 2 (rin in Princeton)

These features, combined with the inferpretative nature of the system, serve to give the
terminal user a capability for interacting with his data that cannot be achieved in the pro-
cedural, batch-processing environment,

L -

390 J. F. VaLLEE
2. THE DATA-BASE CONCEPT UNDER DIRAC

Files and records

The concept of file is retained in DIRAC in spite of the fact that its storage structure is
never apparent to the user and in spite of the confusion it nmay create for programmers who
tend to relate it to the file concept in procedural languages. 1t is difficult to propose a more
commonly understood term for a collection of related records containing data needed for
subsequent processing. Use of the term “Record” in this context raises fewer difficulties as
long as it is understood that within a.given filé, a record is a set of attributes that serve to
identify some entity in the real world. This set is structured according to the general schema
that characterizes the file for DIRAC. To the file level is also attached the concept of “class”
that is a measure of the total volume of the information it contains. This concept will be
defined more precisely below (Part 4, expression (3)).

Fields and subfields

Again, to minimize the confusion between DIRAC and the procedural languages in its
environment, we identify as “Field” an attribute whose value is stored within a Record.
Thus the name of a patient or the date of an operation in a hospital file, the magnitude of a
star or the morphology of a galaxy in an astronomical application are all examples of fields.
Once identified by the user, the fields are declared to DIRAC and named during file creation.
They are then available for any retrieval operation on the file.

An important characteristic attached to the field level is the Type of the information it
contains. This information may be real numeric, integral, alphanumeric, coded, or a date
form. The Type of each field, as welt as the number of basic fields that compose the Record,
once declared, are fixed, although in any given data record flelds may, of course, be missing
(and the storage structure is such that the final physical record contains no space for that
attribute). But any field may be multiple and it may then contain any number of values,
possibly with missing data among the list, for any real record. Such values are called Sub-
fields. They have the same type as the field itself and may be addressed individually, as will
be seen below.

Structure is the main parameter that varies from one language fo another in the DIRAC
family. The first prototype does not allow the extension of the tree-structure subdivision
below the subfield level. Deeper structures, such as non-cyclic graphs, have been designed
and their implementation will begin with DIRAC-2 to permit systematic studies of system
performance (overhead minimization in particular) as a function of structure complexity.

Structures above the file level

As convenient as it is for user conununication, the concept of file is clearly inadequate in
a non-procedural system. Since there is a severe [imit to the amount of time the user of a
so-called “conversational” system is willing to spend at a terminal waiting for a response,
the interactive concept is not compatible with serial file processing. Besides, in a language
that allows browsing, the system must dynamically retain information on the user and his
past transactions with the data-base. Thus the state of the information at any given time is
not necessarily predictable. Intermediate records have to be constructed and retained at
several stages of the inputfoutput process. These in turn may be viewed as true files in their
own right, and the interrelationships between these satellite files and the primary data file
may grow extremely complex.

[E———

DIRAC: an Interactive Retricval Language with Computational Interface 391

DATA-BASE

[
.

[
|
|
|
|
1
|
DATA [DATA DATA i
POOL PoOL POOL |
M08 Ll AD3 |
I] I {
. | . i
| |
| |
I . |
| !
Auxfllary | Flles ;
I ' e o E
\il/ - |
i

PRIMARY FI1LE

|
Record Record |

Fleld#t Fleldfz ... |

Subfield Subfleld
1 $2

Fig. 1. Structure of the DIRAC Data-Base,

DIRAC-1 recognizes an information organization displayed in Fig. 1. The primary
file is “assisted” by at least one and at most fifteen satellite files, in the sense just described,

A primary file, together with its satellites, is called a DATA POOL. The set of all data
pools constitutes the data-base. A DIRAC-1 user with full update and query privileges
(such as the DB administrator) can query in turn any data pool that has ever been CREATEd
under the language: he can also change its contents down to the subfield level without having
to issue any operating system command and without having to reinitialize or reload DIRAC,
The implications of this language constraint on the system which supports the physical files
generated by DIRAC are studied in Part Four of this article. Before we turn to the implemen-
tation mechanism, however, it is necessary to discuss in more detail the interactions between
such a system and its on-line users. ‘

3. SOFTWARE SUPPORT OF PUBLIC INFORMATION NETWORKS

The environment _

One of the major application areas of a language such as DIRAC is found in the support
of information systems, in particular those that give remotely-located scientific users a direct
link to their data-bases while providing them with a computational facility. In this section

J X CT————

392 3 F. VALLEE

we shall describe the flow of infermation through such a network in the light of the process-
ing operations that are at the disposal of a DIRAC user in QUERY muode.

In order to illustrate this discussion, examples will bz drawn from twe data pools that
have been sufficiently tested under the DIRAC system in recent months to guarantee that
they do in fact indicate patterns of general interest. The first application centers on a
hematology file where each record contains all the information obtained in a bone marrow
analysis, including textual data such as clinical history of a patient and doctor’s impression
[3). The second application uses the Preliminary Warsaw Catalogue of Supernovae, that was
converted to machine-readable form in the course of this project; this astronomical
catalogue is an ideal test as it contains all the available physical parameters on the known
supernovae as well as the titles, authors, references and coded contents of the articles that
have been published about them {3].

Access to the data-base

Figure 2 illustrates the hierarchy of access paths to the data-base under DIRAC-1. In
addition to the DB Administrator, three levels of network users are recognized. At fevel 1,

Statlistlical
Packages

Full Computational
Facllicy

| |
| f.evel 1: Query DATA-BASE I
|

I a@«] -5""[Drl =
l L

| At ¥ |
| oP2 {
|

I < - 03 - |
| Level 2: Update H
I DPY }
|

I == DP5 T i
| Level 3: Programming i
| DPE 1 {
| |
’n:==::wnzausgnunnz::xz:::xn:sa FEmYE U AT CNIFEGRANIRERIRIE atnxzul
|

| TEXT EDITOR Input ~Display Output

| Pata -Punch Data

f Sets ~List offllne Sets {
[“Fuli edition A
| faclllity 1
}EzREBE‘-‘B==ﬂ==ﬂ=!{=ﬂ===n-=ﬁ-$!#!HI-,ﬁ--=.=HSIBEEEHHSHIIIBHEIRIZIISﬂﬁﬂﬂaﬂ
| FORTRAN

| Input Extracted |
| Routlnes Information }
|

! ™

| other tapes

1 programs [Special Systems |

|

| Plot/Dlsplay

| rautines

|

|

|

i

|

|

I

|

i

f

FiG. 2. Hierarchy of access paths to the DIRAC Data-Base: A problem of interfaces.

Bers i shrem, e

. e

DIRAC: an Interactive Retricval Language with Computational Interface

393

L . WL Sk g Skt sty W bk g b G TR TR e TS D Pt P e M Y Y S MR 7o A ik, S S— — —_ P—— — S T— AL} SOk RS o S e S ok e drl. s e b ey PP by sy e

QUERY
FILE IDENTIFICATION
: ADl0
ACTION
H SELECT
SELECTION RULES
: Cluster CONTAINS Virgo END

24 RECORDS SELECTED
ACTION

: RETAIN

ACTION

: SN CONTAIMS s END

i RECORDS SELECTED
ACTION
: DISPLAY SN Vs Cluster

SN si822alpha
Vs 1243
Cluster Virgo

1 RECORDS SELECTED
ACTION :
: RELEASE
ACTION
H Cluster CONTAINS Virgo AND SN DOES NOT
: CONTAIN s END

23 RECORDS SELECTED
ACTION

: RETAIN

ACTION

: ¥s EXISTS END

18 RECORDS SELECTED
ACTION
: - Vs (<=2000 AND >=1000)END

11 RECORDS SELECTED
ACTION
: Sources{FIRST) CONTAINS "Mt.Wilson'" END

1 RECORDS SELECTED
ACTION
H DISPLAY SN Vs 12 b2 Sources END

SN 1901b
Vs 1617
12 271.15
b2 76.90
Sources
¥IV Colloque Intern.Astrophys,, Paris (1941), 186,
Annales Observ.de Paris, 9 (1945) fasc.,l, 165-178.
Astroneomie 55 (1941), 78, 106.

Astronomie 63 (1948), 68,

N R A A

N L WM

Fi1G. 3. On-line interrogation of an astronomical catalogue.

Ap.J.,88(1938),285-304~ Contr.Mt.Wilson, 25 (1938} No.B60OC

188,

e g

[,

194 J. F. YALLEE

the QUERY mode is the only one invoked. At level 2, UPDATE takes place, with an input
interface with the text editor {(WYLBUR). At level 3, the users are systems programrers
who have full use of the text editor like level 2 users, but also utilize the FORTRAN/
DIRAC interface to apply statistical routines or other computational packages to informa-
tion extracted from one or several data pools. Under the text editor, all users have at their
disposal display, list, punch and edition facilities that can be used to enhance the report
generator supplied under DIRAC. Thus it is quite conceivable that, at one end of the spec-
trum, we shall find people querying data files exclusively within DIRAC commands, while
others will simply view the whole Data-base management system as an input-output
channel towards the text editor or towards FORTRAN. Nothing should prevent such a
variety of usage, since the pure “retrieval” phase may be only a step in a very complex
processing activity which takes place outside the scope of DIRAC. In attempting to cover
such complex activities within a single framework, a generalized system would necessarily
become cumbersome and would fail its major objective, which is to facilitate the com-
muaication of information among its users.

Figure 3 is an example of the on-line query of the Supernovae Catalogue implemented
under DIRAC-1. The user is an astronomer who studies supernovae in the Virgo cluster.
He first wants to know how many are false or suspected. The system finds one, and he
displays the supernova number and the recession velocity, Vs. It will be noted that DIRAC
processes information in both upper and lower case, thus simplifying the handling of
textual data, especially in the scientific field.

The user then wants to determine how many true supernovae in Virgo have a known Vs,
The answer is 19. Restricting the search by use of the RETAIN command, he adds the rule:

1000 km/s < = Vs < = 2000 km/s

The answer is 11. Among these, the astronomer wants DIRAC to locate a supernova for
which the first article given as reference has “Mt. Wilson™ as its source. DIRAC locates
supernova number 1901b. The user is now able to have the velocity, galactic coordinates,
and all the literature about the object typed out on the terminal,

Under the DISPLAY command, it is possible to restrict the output to the LIST of
selected records, or even to their NUMBER only. Alternatively, the DISPLAY ALL com-
mand will generate a complete listing of the information in the current subset. When com-
bined with the text editor interface, these-commands give the user a flexible report generation
capability. .

A second example, shown in Fig. 4, will serve to illustrate further the usefulness of the
system in dealing with textual information expressed in natural-language strings rather than
in codes or numbers. This situation is typical of many medical applications where very few
queries indeed can be anticipated at the time of file implementation, and where the re-
searcher must rely on the ability of the system to allow flexible interaction with the data at
run time.

On the example of Fig. 4, the commands RETAIN and RELEASE have not been used;
one can see alternative formulations of the selection rules as well as the nesting facility
altowed in DIRAC. It should be noted that the query commands of an interactive system
need not be as sophisticated as those of a batch system: in the [atter case, the user must be
able to anticipate very minute details of the information he is addressing; in the interactive
mode, general queries can be rafined by successive selection rules until the desired subset
is obtained, and the process is continuously controifed by the user.

INF. STOR, RET,

red cells are prasent, Platelets are low. There are

Immature myelold elements,

Aspirate The red cell activity Is Increased. QOccaslonal
megakaryocytes are present.

Impression There 1s thrombocytopenla with some megakaryogytes In

marrow. The smear suggests marked red cel) actlvity, as

seen with hemolysis. The possibiility of extramedullary
hematopoles!s [s also to be considered.

ACTION
H ERD

AT THIS POINT YOU CAN EXIT (BY TYPING AN EXCLAMATION MARK)
OR SPECIFY A NEW EXECUTION MODE

noted, Red cells are of varying slze and shape, Nucleated

DIRAC: an Intcractive Relrieval Language with Computational Interface 395
|
| ACTION
| SELECT
| SELECTION RULES
[date ¢ 19691126 AMD date >= 198591115
o END
! |
| 7 RECORDS SELECTED |
[|
| ACTION
Iz date<691126 AND date >=19691115
] s AND (History CONTAINS "HodgklIn™
{ : OR Smear COMTAINS "red cell') END |
! |
{ 76 RECORDS SELECTED l
i
| ACTHION
[dage (¢ 691126 AND >= 681115) AND (Ristory
| CONTAINS "Heodgkin' QR Smear CONTAINS "red cell™) {
| 2 AND Asplrate EXISTS AND Impression CONTAINS thrombocvtopenia |
} END |
[|
| 1 RECORDS SELECTED |
| i
| ACTION i
i+ DISPLAY ALL {
i |
! Record 305847 |
| Patient XEXKKXXX |
| Age hg yr |
| Room EZA |
| Marrow 869~687 |
[Doctor Dr.Z.Lucas l
I Date ZL/NOV/1969 I
[History Lg-yr old male 2 months post renal transplant. Decreased]|
I ptatelets, WBC and PCV, but increased retics. Hemolysls |
| vworkup In progress, I
| Smear Microanglopathic changes are seen, Polychromatophilla ls]|
i
|

e . S — — —— ——— i AN A . i Bl el

27

FiG. 4. On-line interrogation of a medical file showing various levels of query complexity.

396 J. F. VALLEE
4, PRINCIPLES OF SYSTEM ORGANIZATION

Early in 1970, DIRAC-1 was implemented on the IBM 360/67 computer of the Campus
Facility at Stanford University for a series of tests that demonstrated the flexibility and the
cost-effectiveness of the non-procedural approach to retrieval problems. The results of these
tests are the subject of separate-publications [3, 5]. This version of DIRAC relied on a time-
sharing submonitor named ORVYL, designed by R. Fredrickson and his co-workers, and
operating under the OS/360-HASP system. This submonitor provides the ability to execute
user programs in time-shared mode and it supports the DIRAC data-base on the 2314 disk
units.)

Although a detailed deseription of the DIRAC-1 processor is beyond the scope of this
article, it is of interest to examine in some detail the principles of the file system, its disk
reference minimization algorithm and the chaining structure of its primary file, in order to
clarify the remarks we have made above concerning its properties.

The basic concept under ORVYL is that of ownership of files by a group of users, the
disk space held by the group being charged to the account number by which it is known to
the computer. Access to a file may be extended by the owner of a file to any other group, and
the owner may also deny such access, or extend more privileges to the public (defined as the
“group” that consists of alt account numbers validated for terminal use).

Index records are used to keep pointers to those records that exist. Input/output under
the system consists of a request for a service, followed by a wait for completion, DIRAC
passes an ATTACH command to the system for every file it uses. This is accomplished by.
executing a macro that specifies:

—The class of device to be attached
—The name of the file
—The avajlability of the file to other tasks in execution

All files under DIRAC are attached in shared mode.

The system actually maintains records of 2048 bytes, core storage being divided into
pages of 4096 bytes each. A buffer area may not cross more than one page boundary: thus,
a 4K buffer may begin anywhere bat an 8K buffer must begin on a 4K boundary. DIRAC
records are blocked into such 8K buffers, and indeed a single data record may use all of
8192 bytes if the user so specifies. The 1/0O operations result in the handling of four physical
records under the system.

Reliance on this physical file implementation in DIRAC is limited in fact to only two
modules. The interface has been defined in such a way as to allow DIRAC to run under a
different system with a minimum amount of recoding.

In the following, let &7, and &, designate respectively the primary and the reference
file in a given data pool with » fields, and let e;; be a bit string of length / identifying the
existence property of field i in record j; furthermore, let Nz be the number of records in

F ¢ and let
3‘71:{51,...,5;‘,...6“}

with
M=n.Ny
and
& = 8
for

k=n(j—D+i. (1

[N ———

DIRAC: an Interactive Retrieval Language with Computational Interface 397

Let R be a bufler of n1, words, i.c. a bit string of length m = b.my, on a computer with
b-bit words. Noting that # is known to DIRAC at the end of the CREATE phase, we
compute:

m
L=b [—"J)
n
as the clementary bit string in the reference file. The number of overlays of R that will be
used in the course of an interrogation or update run is a basic measure of the volume of
information that exists in the file and can be written as

K= [I—VER] (3)

This is the quantity we define as the “class” of the file. If jg is the number of the current 7,
record in core, and a decision is to be made whether or not to retrieve record j, we examine
bit p, in R such that:
k=Li-1D+({—jo+1). E (4)
In our FORTRAN-based implementation it was convenient to compute the corres-
ponding word number and to examine R(m,) with

R m (5)

with the appropriate mask on bit (k—5&.m,).

Within %, the chaining structure is generated by the discrete update processor. We
propose to illustrate its operation to conclude this discussion of DIRAC by giving both a set
of productions from which a simplified state diagram can be constructed, and an example.

The following input symbols are accepted:

N precedes a new record

O designates an old record and is followed by either D (delete) or R (replace) and an
integer indicating the number of the record to be deleted or replaced.

oo > @fowy =1, oy
oy = gfcrn = 0, aa
Olg — @f{ﬁ, oo

= NIA(Y), o3

- 0/¢, ag
oy = P, oy

— rPl, ¢a
oy —> Pleg = wat1, a5
os = @fi = 41, ta
og > ¢/ Xoy = Y, oz
oy ~> ¢l =1, oz
og — é/f = Xuv As
o = D[A({), 210

= RIA(0), 211
o0 - QX = F oy, or

- rQ[F, 13
oy = Q[A(Y), 212

-» —Q[F, o15
oz = P/X; =Y, o2
g =+ @/, %o

o r"@:’éa i3

L

398 J. F. VALLEE

Let #, be a sequence of records Xy, X5, ...
#1 designale a record pointer containing a single integer {
Y designate a buffer
w,, o, designate two counters.

Furthermore, let A(x) be the action of reading an input token into storage area x
P be the logical proposition: @, > w,
¢ be the proposition “X is not a record pointer™.

Other symbols {ollow the usual conventions.
Example:

Consider the input string:
@NaNbOR1eNdO D2Ne@.

The resulting file contains the three records: (c,e,d) after the steps detailed in the table
below:

sf.cp o 21 ¥ I X1 Xg Xs

I 1 0

2 1 0 a

3 1 0 a a

4 2 I b a

5 2 1 b a b

6 3 2 1] a b

7 3 2 b a b

8 3 2 b I a b

9 3 2 ¢ 1 c b

10 3 2 d 1 ¢ b

11 3 2 d 1 ¢ b d
12 4 3 d 1 c b d
13 4 3 1’4 1 ¢ b d
14 4 3 d 2 ¢ #4 d
15 2 3 d 2 e #4 d
16 2 3 e 2 c e d
i7 4 3 e 2 ¢ e d

CONCLUSION

The main novelty in the design of DIRAC is the concept of a generalized file manage-
ment system that interfaces with, and can be driven from, an interactive text editor. This
concept makes it possible to implement catalogued interrogations and complex report
generation with minimum complexity. '

The second feature in DIRAC that we feel points to a solution of the scientific data-base
problem is the opportunity given the user to branch freely into his own code once the basic
retrieval function has been accomplished, on a record-by-record basis. Thus an environ-
ment is created where non-procedural commands can interface optimally with user-supplied
routines.

‘ihnwm-m.m_—-..m -

DIRAC: an Interactive Retricval Language with Computational Interface 399

REFERENCES

[1] Survey of Generalized Data-Base Management Systems. CODASYL Systems Committee, [969.

[21 WYLBUR Reference Manual. Stanford University Computation Center, Stanford, 1965.

[3] P. L. WorF, H. R. LubwiG and J. F. VaLLEE: “Progress Towards a Direct-access Hematology Data-
Base: Stanford’s experience with the DIRAC Language”. To be published.

[4] J. F. VALLEE: “Scientific Information Networks: A Case Study”, Research Report IT, Information
Systems Group, Stanford Computation Center, September 1970.

[5] J. F. VaLiee and J. A. Hynek: “DIRAC and astronomical data retrieval”, Proceedings of ACM'70,
New York, September 1970.

